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The two-dimensional incompressible mixing layer was investigated by using 
constant-temperature, linearized hot wire anemometers. The measurements were 
divided into three categories: ( 1) the conventional average measurements; 
{ 2) time-average measurements in the turbulent and the non-turbulent zones; 
(3) ensemble average measurements conditioned to a specific location of the 
interface. The turbulent energy balance was constructed twioe, once using the 
conventional results and again using the turbulent zone results. Some differences 
emerged between the two sets of results. It appears that the mixing region 
,can be divided into two regions, one on the high velocity side which resembles 
fhe outer part of a wake and the other on the low velocity side which resembles a 
jet. The binding turbulent-non-turbulent interfaces seem to move independently 
of each other. There is a strong connexion between the instantaneous location 
of the interface and the axial velocity profile. Indeed the well known exponential 
mean velocity profile never actually exists at any given instant. In  spite of the 
complexity of the flow the simple concepts of eddy viscosity and eddy diffusivity 
appear to be valid within the turbulent zone. 

1. Introduction 
The two-dimensional incompressible mixing region is considered as one of 

the ‘simple’ self preserving free shear flows. The turbulent structure of the 
flow was investigated by Liepmann & Laufer in 1947, and none of the investiga- 
tions that followed were comparable in detail to this work. In most other cases 
the experiments were confined to the measurement of mean velocity. In attempt- 
ing to make some comparisons between this flow and other free shear flows some 
major differences emerged. Most of these differences were attributed t o  the 
asymmetry of the two-dimensional mixing layer yet some were inexplicable on 
this basis. Since techniques of hot-wire anemometry have developed significantly 
over the last 20 years it seemed worthwhile to reconsider this flow. The in- 
vestigation was not confined to a mere repetition of Liepmann & Laufer’s 
work, but was extended to include third- and fourth-order products of the velocity 
fluctuations, spatial derivatives of these fluctuations, space-time correlations 
and intermittency . Furthermore, various zone average measurements were made, 
namely, an intermittency detecting network was constructed which, when 
coupled to an electronic switch, achieved the separation of the turbulent fluctua- 
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tions inside the mixing region from the potential fluctuations outside the 
turbulent front. The importance of this discrimination was discussed by Kibens 
(1968) who showed that the intensity of the potential fluctuations outside the 
boundary layer may reach almost 40 % of their turbulent counterparts at  
a point where the intermittency factor y is equal to 0.5. This finding raises the 
question whether the standard measurements adequately describe turbulent 
free shear flows. 

The quantities measured were primarily aimed at  the construction of energy 
balance, the study of which may shed most information on the problem. In con- 
structing the energy balance an attempt was made to avoid as many assumptions 
as possible with regard to the flow structure. 

Finally some velocity profiles conditioned to specific location of the interface 
were measured. Measurements of this type give some insight into the instan- 
taneous picture of the flow which is apparently very different from whatever 
may be anticipated from knowledge of the average conditions. 

A-A 

Plenum. 
chamber 1 \ Inner side /Trip - wire 

;I i 
Outer side 

FIGURE 1. A schematic diagram of the test section. 

2. The test facility and experimental method 
A conventional blower-tunnel was used to supply the jet. A backward step 

blower powered by a 5 h.p. regulated direct current motor discharged into a 
plenum chamber 6 f t .  in diameter. The plenum chamber was equipped with 3 
screens and a deep honeycomb in order to reduce the turbulence level at  the 
nozzle exist. The air was then discharged through a rectangular nozzle 7 in. wide 
and 20 in. long. The contraction ratio was 28: 1 and the turbulence level was 
lower than 0.1 yo. 

The jet was allowed to mix on one of its boundaries with the surrounding 
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quiescent air (figure 1),  the other 3 boundaries were solid. To prevent a lengthy 
transition region (6 em in the case of Liepmann & Laufer (1947)) a trip wire 
was placed just upstream of the mixing region (figure 1) .  The air was cleaned 
using a Honeywell electrostatic precipitator and its temperature did not exceed 
the ambient room temperature by more than 1.5"P. All measurements were 
made at  a speed of 12 m/sec. Most of the measuring equipment and procedure 
was described in a previous paper (Wygnanski & Fiedler 1969). 

Only the turbulent intensities were corrected for tangential cooling accord- 
ing to the formulae given by Champagne & Sleicher (1967). The response 
of the hot wire was assumed linear and no corrections resulting from higher 
order terms were applied. The higher order terms, which were measured, are 
presented in this paper. 

All velocities are rendered dimensionless by dividing them by the free-stream 
velocity U,. The origin of the lateral co-ordinate was chosen at  a point at  which 
the mean velocity was equal to one half its free-stream value and rendered 
dimensionless by dividing it by x,  the distance from the hypothetical origin 
of the flow. 

The various averages obtained in this investigation are defined as follows: 
(1) The conventional average of any field variable &(t )  is 

( 2 )  The turbulent zone average - 
QT = lim - / " I ( t )  Q( t )d t ,  

T-tm yT 0 

where I ( t )  = 1 when the flow is turbulent, I(t)  = 0 when the flow is potential, 
y is the mean value of I ( t ) .  

(3) The potential zone average 

The turbulent and potential zone averages are related to the conventional average 

by Q = Q T Y f Q p ( 1 - Y ) .  

It is convenient to obtain the conventional square of the fluctuating com- 
ponent of a quantity by a capacitive coupling of the signal. Whenever it is desir- 
able to obtain a zone average of a square of a fluctuating component the difference 
between the conventional d.c. level and the zone average d.c. level has to 
be taken into account. Thus the square of the quantity which is actually 
measured is 

[Q( t )  - 61' = ( [Q( t )  - QTI + COT - O)}' 
= [&(t) - &,I' + (8, - Q)' + 2[Q(t) - 6,1(6, - Q), 

but the fluctuating quantity in the turbulent zone is given by Q ( t )  = QT + qT 
and hence 
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and 

Thus in order to obtain the difference in the d.c. level should be known. 
The corrections become somewhat more involved when higher order zone- 
average cross-velocity products are to be obtained. The correction can either be 
applied analytically or in an analogue manner from d.c. power supply (Kibens 
1968). In the present investigation the analytical method was used. 
(4) One may also measure point averages which are conditioned to a specific 

location of the interface. In  this case a distinction is made whether the detector 

probe enters (+) or leaves (t) the turbulent front. Thus if I ( t )  = 1 when the 
probe enters the front and it is zero at  all other times the leading edge point 
average is 

(Q) = lim - C I (tn)&(tn), 

--4 

1 n +  -+ 

n+m n,=i 

where at an arbitrary time t = 0 the first leading edge of the turbulent front hits 
the detector probe. Similarly the trailing edge average 

1 n t  + 
(Q) = lim - C I(tn)Q(tn), 

where I ( t )  = 1 when the detector leaves the turbulent front and I ( t )  = 0 at 
all other times. 

The pulse time for which the integrating gate is open should be of course small 
in comparison with the time between successive pulses. The minimum number of 
samples required for a given accuracy is assessed from the frequency of crossing 
of the turbulent front, the pulse time, and the intensity of some turbulent 

fluctuations. In  the present investigation only (U) and (U) were measured. 
The minimum number of samples taken was 5000 and the time of the individual 
pulse was 0.2 msec and 0.1 msec. A more detailed description of point averages 
and the acquisition times required are presented by Kibens (1968). 

n+w n= I 
4- t 

c 3 

3. The intermittency factor 
The basic signal used to distinguish between the turbulent and non-turbulent 

regions was (a2u’/at2)2 + ( a ~ ’ / a t ) ~ ,  the differentiating process eliminating the 
low frequency fluctuations which are associated with the potential flow. The 
addition of the two derivatives enabled a reduction in capacitive smoothing. 
The signal was processed in a manner similar to that suggested by Heskestad 
(1965); however, the triggering level did not have to  be adjusted as the probe 
was moved from point to point. This fact was rather unusual since in most flows 
a continuous adjustment is necessary (e.g. Demetriades 1968, Wygnanski & 
Piedler 1969). The Schmitt trigger signal was monitored and checked on a Tektro- 
nix dual-trace storage oscilloscope (figure 2 ) .  An attempt was made to process the 
signal (a2u/8yat) for the detection of turbulence (Kibens 1968) but the results 
were not superior to the above-mentioned signal. 
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Cumulative data of the spatial variation of the intermittency factor are shown 
in figure 3. It appears that stretches of irrotational flow exist throughout the 
mixing region. This is not a commonly observed fact but a similar observation 
was made by Hwang & Baldwin (1966) in the axisymmetric wake. Nevertheless, 

0 

I I I %3 rn 

8 
W 

FIGURE 2. An oscillogram of the fluctuations of the longitudinal velocity component 
and the Schmitt trigger. 

the curve shown in figure 3 is well approximated by two error functions as may 
be inferred from the probability plot of these results (figure 4). The average posi- 
tion of the turbulent front on the high velocity side of the flow is given by 
vi = - 0.11 while the corresponding position of the outer (low velocity) side of 
the flow is given by To = 0.07. The standard deviations from these positions are 
cri = 0.0367 on the inner side and ro = 0.0447 on the outer side. Since the value of 

- 
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CT is associated with the large eddies, one may expect the integral scale on the low 
velocity side to be larger than on the high velocity side of the flow. From these 
observations it seems highly improbable that the excursions of the turbulent 
front on the high velocity side will ever reach the location where yo < 90% 
and vice versa. 

0. 

- 0. 

- 0. 

High velocity. 
r side (Yi) 

I t  I I  1 ’ 1 t I I I  I I l l  

5 1 2 5 10 20 30 40 5060 70 80 90 95 98 ! 

Y(%) 
FIGURE 4. The distribution of intermittency drawn on probability paper. 

The rate a t  which the turbulent front crosses a given point is also shown in 
figure 3. The curve has two peaks corresponding approximately in their loca- 
tion to yo = yi = 0.5. The maximum crossing rate of the inner turbulent front 
is approximately 80 see-l as compared with the crossing rate of 100 see-1 of 
the turbulent front on the low velocity side. The average duration of a turbulent 
burst is y/f and the average physical length of a burst may be obtained from the 
knowledge of the velocity a t  which the interface was convected downstream. The 
latter was not measured; however, the convection velocity of the large scale 
eddies was obtained from space time correlations of the filtered u‘ signal (figure 
24). The two velocities should be essentially the same. Thus the length of a 
turbulent burst is given by L,, = (yUJconvection)/f. The ratio of a/Ly is a measure 
of the ‘roughness ’ of the interface. Hence, a t  a location corresponding to yi = 0.5, 
ai/Lyi = 0-46, and a t  a location corresponding to yo = 0.5, ‘T,,/L,,~ = 1.83. If 
instead of the convection velocity the velocity of the free stream (U,) was used 
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the ratio of g/Lyi would have been equal to 0.23. This number compares 
favourably with the corresponding value obtained by Kibens (1968) at the outer 
edge of the turbulent boundary layer. Indeed there are a number of similarities 
between the high velocity side of the mixing region at the outer part of a two- 
dimensional boundary layer or wake. 

From the ratio (o-O/Ly0)/(q/Lyi) M 4, it may be concluded that the turbulent 
front is more flat on the high velocity side. 

4. The mean velocity 
The mean velocity was measured with a single hot-wire perpendicular to the 

uniform stream and with an X-wire. Both measurements yielded essentially the 
same results. The profile attained its similarity condition at  x = 12 in. and 
even at  x = 8 in. the velocity profile deviated very little from its fully developed 
form. The relatively short distance required for the mean flow to attain its 

r 
FIGURE 5. The conventional mean velocity profile. 2: 0, 23.1 in.; 0 ,  19.23 in.; 

0 ,  15.275 in. 

equilibrium form is attributed in part to the trip wire which eliminated the initial 
transition region. The rate of spread of the flow is faster than the rate measured 
by Liepmann & Laufer (1947) and this fact may be attributed to the trip wire 
as well as to the presence of a solid surface in the plane x = 0 whichwere not used 
previously.? By choosing a spread parameter g = 9 the present velocity profile 
becomes almost identical to that measured by Liepmann & Laufer. The velocity 
profile is shown in figure 5 and the locus of points at  which the velocity is equal 
to 4 the free-stream velocity is shown in figure 6 .  The mixing region thus grows 
linearly with downstream distance and the hypothetical origin of the flow is 
approximately $ in. upstream of the step. The averaging times required to ob- 
tain each point of the present data were much shorter than the corresponding 

t The authors are indebted to a referee for this comment. 
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times in the axisymmetric self-preserving jet. It may be deduced from these 
figures that the turbulent flow spreads more rapidly on the quiescent side of the 
mixing region than on the high velocity side. The mean velocity in the turbulent 
zone, uT is shown in figure 7 and the average potential velocity up, between the 
turbulent bulges is shown on the same figure. Since y is always less than unity, 
up is shown as a continuous curve although its value at the centre of the flow 
(where y > 90 yo) is somewhat doubtful. The free stream is decelerated between 
the turbulent bulges while the quiescent air is accelerated by the turbulent flow. 

I I I I I I 
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-urn 

x (in.) 

i 

FIUURE 6. The growth of the mixing region with downstream distance. 
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FIGURE 7. The distribution of the zone-average axial velocities. 0, a (turbulent); 
0 ,  U (potential). 

The acceleration of the quiescent air is much more spectacular than the decelera- 
tion of the uniform stream. At the location corresponding to yi = 0.9 the potential 
flow was decelerated to 95 % of the free-stream value while the outer fluid was 
accelerated to 32 yo of the free-stream velocity at  the corresponding location of 
yo = 0.9. The acceleration of the potential flow may be related to the ‘rough- 
ness’ of the interface crlL,. 

as well as the zone averages 
of this velocity were measured and are shown in figure 4. However, the dis- 
cussion of this figure is deferred to a later section in which the lateral energy 
transfer is discussed. 

The conventional mean transverse velocity 
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The point average velocities in the direction of streaming are shown in figures 
8 and 9. The experimental results indicated that both leading-edge and trailing- 
edge point average velocities are identical. In  one case the switch opens when the 
detector enters the turbulent front and the sample is taken when the detector 
is inside the turbulent region while in the other case the sample is taken after 
the detector left the turbulent zone. The relative shortness of the pulse-time 
relative to the time required for the 'bulge' to pass can explain this equality. 
The symmetry of the U velocity about the centre line of a turbulent 'bulge' 
was observed in the boundary layer (Kibens 1968). 
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FIGURE 8. Some axial velocity profiles conditioned to a specific location of the turbulent 
interface on the high speed side of the flow. Intermittency at the detection station: 
0 ,  0.1; V,  0.3; 0, 0.5; A, 0.7. 

1.0 

0.8 

b' 0.6 

5 0.4 
. h 

v 

"2 I Location of the $&to; , - - 
-"0.2 -0.1 0 0.1 

4 

FIGURE 9. Some velocity profiles conditioned to a location of the interface on the low 
speed side of the flow. Intermittency at the detection station: 0 ,  0.1; V,  0.3; 0, 0.5;  
A ,  0.7. 

The velocity profiles conditioned to a given location of the interface on the 
inner side of the mixing region are shown in figure 8. Outside the detector probe 
the velocity is practically constant and equal to Urn. On the inner side of the 
probe the velocity profile drops linearly with distance from the detector. The 
linear dependence extends to 7 M 0.05 (i.e. corresponding to yo M 0.7); further 
away from the detector all profiles coalesce to the conventional mean velocity 
profile. The weighted average of these profiles with the average frequency of 
the pulses at the detector yielded the conventional mean velocity profile. This 
fact may serve as an indirect check on the interface crossing rate measurement. 
A drastic change in d( U ) / d y  seems to occur over a very short distance across the 
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interface. Although d ( U ) l d y  appears to be constant within the turbulent zone 
its value depends on the location of the interface. When the detector is moved 
to the low velocity side of the interface, very similar results are obtained except 
that now the velocity outside the interface continues to drop. The coalescing 
of the profiles on the far side from the interface which was monitored lead to 
the conclusion that each interface moves independently. Thus the mixing region 
as a whole does not flap like a flag about some average location. It seems plausible 
to infer that the instantaneous velocity profile in the turbulent region is approxi- 
mately a straight line connecting Urn with 0.2Um over a lateral distance between 
the instantaneous locations of the two interfaces. The conventional mean 
velocity profile, D, never exists in the flow, it is only the result of a long time 
averaging process over random excursions of the interfaces. 

One may compare some of the present results on the high velocity side, with 
the measurements in the outer part of the boundary layer (Kibens 1968). The 
following conclusions may be drawn: (1) In both cases is decelerated by 
approximately 5 % at 'yi M 90 yo. (2) The zone average turbulent velocity 
aF at yi = 90 % is about 0.82Um while at the corresponding location in the boun- 
dary layer uT = 0.91Um. Hence the turbulent velocity gradient in the mixing 
region is significantly larger. (3) The point average velocity profiles within the 
turbulent region of the flow are in both cases linear functions of the lateral 
co-ordinate. However, whereas in the boundary layer the slope of the various 
profiles remains constant, in the mixing region a( U)/aq  depends on the location 
of the interface and thus changes from profile to profile. These differences 
between the two flows may stem from the absence of a large region of fully 
turbulent fluid in the case of the mixing layer. 

5. Fluctuation intensities and shear stress 
In  figures 10, 1 1  and 12 the r.m.s. values of the 3 components of velocity 

fluctuations are shown. All measurements were made with an X wire but some 
values of the longitudinal fluctuations were checked against an ordinary hot 
wire. The response of the wire was assumed linear and the direction of the mean 
flow was assumed to be parallel to the uniform stream. The results indicate that 
the flow is self preserving at  Re, z 3 x lo5 which is about 25 % smaller than the 
Reynolds number reported by Liepmann & Laufer (1947). 

The maximum of (u'z)*/Um and (v'z)*/U,, were 0.176 and 0.138 respectively. 
These intensities exceed the maxima measured by Liepmann & Laufer by about 
10 % for u' and 25 yo for v' fluctuations (when correction for tangential cooling 
is applied to both sets of data). The differences may again be attributed to the 
inadequately low frequency response to the old electronic networks (Wygnanski 
& Fiedler 1969). 

The general shape of the curves is very similar in both investigations. It 
was also noticed that whereas the peak of u7 fluctuations occurs at 7 w 0 the 
vT distribution has a peak at 7 = - 0.045 and the w7 at y = - 0.035. The reason 
for the lateral shift between the peaks of uX and vTis not understood; how- 
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ever, this shift becomes even more evident whenever higher order terms are con- 
sidered. In  the central core of the mixing region the magnitude of is smaller 
than w)2 which in turn is smaller than zz. 
0.2 

$ 

p 
$ 0.1 

0 

0 

O %  
e 

8 
P 
Q 

.o 

*@ 

0 
8 

0 

- 
0 

e@ d", 

0. * *-. 

0 0 @. 
0 

P 

8 0 
oeo 
I I I I I 

FIGURE 10. The conventional average distribution of the axial velocity fluctuations. 
x: 0, 23-725 in.; 0 ,  19.850 in.; 0,  15.900 in. 

71 

FIGURE 11. The conventional average distribution of the lateral velocity fluctuations. 
2: 0, 23.725 in.; 0 ,  19.850 in.; 0 ,  15.900 in. 

The zone-average measurements of the three components of the velocity 
fluctuations are given in figures 13, 14 and 15 in which the conventional 
averages are shown as solid lines. The results presented were corrected for 
the d.c.-jump as indicated in $2. It is quite apparent from these figures 
that the intensities within the turbulent zone are highly inhomogeneous and 

22 FLM 41 
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non-isotropic. The intensity of (&')T is higher than the intensity of the other 
components in the outer (low velocity) and central regions of the flow. Only 
in the inner region (7 < - 0.1) the intensities of (p)T and (W'2)r become larger 
than that of (p)T. The lateral shift in the location of the peak of the intensity 

b ." O.1° t 
I 

T 
FIUTJRE 12. The conventional average distribution of the transverse velocity fluctuations. 

X: 0, 23-725 in.; 0 ,  19.850 in.; 0 ,  15.900 in. 

2 

9 

FIUTJRE 13. The zone average measurements of the longitudinal fluctuations. .- 
-3 u'Z/R; 0, (zc'2/va,)T; 0 ,  (z2/va,)s. 

of the individual components in the turbulent zone remains. The distributions 
of (p)T and (q2)T are more or less symmetrical about the peak, however the 
intensity of (w'",, drops rather slowly with decreasing 7. 

The intensity of the potential fluctuations is shown on the high velocity 
side of the flow only. The intensity of these fluctuations is not negligible when 
compared with the turbulent intensity even when they are weighted by y. 
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For example at  a location corresponding to y = 0.5, ( v ' ~ ) ~  NN 0 ~ 3 ( 3 ) ~ .  Con- 
sequently very little can be inferred about the turbulent zone in a highly inter- 
mittent flow from the conventional measurements. A detailed discussion of this 
problem is given by Corrsin & Kistler (1955). 

The theory of Phillips (1966) describing the potential fluctuations was pre- 
viously compared with experimental results of Townsend (1951), Bradbury 

7 
FIGURE 14. The zone average profiles of the lateral fluctuations. 

--,vWU2,; 0, (PlU2,h; 0 ,  (Flv",,,. 
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T 

FIGURE 15. The zone average profiles of the transverse fluctuations. - 
-, w'a/Uam; 0. (wlalU&; 0 ,  (w.alqJ,. 

22-2 
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(1965), Bradshaw (1967) and Kibens (1968). In  all cases with the exception 
of Kibens the measurements were made in a region where y+O, i.e. quite far 
from the average position of the turbulent front. Since the squares of the poten- 
tial fluctuations should asymptotically decay as y-4 (where y is a distance normal 
to the turbulent front and measured from some hypothetical origin) they become 
rapidly comparable to background turbulence level. Kibens has shown in the 
two-dimensional boundary layer that the asymptotic condition (ZL'Z) cc y-4 
applies even between the turbulent 'bulges' where the intensity is still quite 

1 .o 

Y 
0.5 

-0.20 -0.15 -0.10 -0.05 0 
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FIGURE 16. The potential fluctuations on the high velocity side of the flow. 

- 0.165 0.000671 0.00105 0.00172 0.00180 4.4 yo 

- 0.105 0.00 16 1 0.0 0 3 2 0 0.00481 0.00546 11.9 yo 

- 0.065 0.00625 0.00680 0.01305 0.0123 5.38 yo 

- 0.145 0.00099 0.00150 0.00249 0.00253 1.6 yo 
- 0.125 0.00141 0.00230 0.00371 0.00392 4.84 % 

- 0.085 0.00293 0.0050 0.00793 0.00794 0.13 Yo 

large. A more stringent test of the theory is to confirm the equation stating that 
(a), + (T2), = @ ) p  which is not limited to large values of y. This equation was 
confirmed as shown in figure 16. It is surprising that all components of the in- 
tensity of the potential fluctuations vary as Y - ~ ,  even at  a distance equal to 
the mean position of the turbulent front. 

On the low velocity side of the mixing region the large changes in the flow 
direction between the turbulent and non-turbulent zones and probably within the 
potential 'valleys ' themselves pose a serious problem. Calculatioiis based on 
the continuity equation indicate that the mean-flow direction in the turbulent 



The two-dimensional mixing region 341 

zone is essentially parallel to the uniform stream (tan-1(V/17)T < 4"). Calcula- 
tions based on the conventional measurements indicate that at  7 M 0.12, 
tan+ = 15" and increases rapidly with 7, the estimates for the potential 
zone are much worse. Since the main purpose of the present investigation was 
to  examine the turbulent field no effort was made to align the hot wire with 
the direction of the mean potential flow. Because of the angular misalignment 
with the mean flow, corrections should be applied to the conventional measure- 
ments for 7 > 0.1. These corrections arise from the failure of the cosine law 
{tangential cooling) and the interference of the stem. For this reason the inten- 
sity of the potential fluctuations on the outer side of the flow is not shown. 
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FIGURE 17. The conventional average shear stress distribution. 
z: 0, 23.725 in.; 0 ,  19.800 in.; 0 ,  15.900 in. 

The conventional average distribution of the shear stress is shown in figure 
17. The solid curve on the same figure shows the distribution of shear stress as 
calculated from the mean velocity profile. The calculation proceeded from the 
high velocity side and proved to be independent of the location at  which the 
boundary conditions were applied, provided that location was chosen sufficiently 
far away from the mixing zone so that v/U, = 1 and d(o/U,)/dy = 0. The 
location at  which is maximum corresponds to the location at which 
d2(g/Um)/d72 = 0 and there was no necessity to impose that condition as a 
boundary condition (see Liepmann & Laufer 1947). The fact that the measured 
and calculated shear stress distributions agree quite well is attributed to the 
small scatter in the mean velocity profile. 

is given in figure 18. The profile of 
(u)2)))T is not symmetrically distributed about the conventional mean profile. 
While (a)T is almost constant on the outer part of the flow it drops quickly 
on the high velocity side. Very little can be said about (uTjP except that it 
is very small and indeed may be non-existent; on the low velocity side of the 
flow even negative values of (UT)~ were measured and were also estimated from 
the other uTmeasurements. 

The zone average distribution of 
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FIGURE 18. The zone average measurements of shear stress. 
_. - _ _  

-, u i / V m ;  0, (ub’/rJ&; 0 ,  (u’w’/Pm)s. 

6. Correlations and spectra 
Two point space-time correlations were measured along the line 7 = 0 a t  

various distances from the origin. Measurements across the flow were done a t  
a single section corresponding to x: = 19-47 in. Providing the flow is self preserving 
the results of these measurements should be applicable to any other point in the 
flow. The R,, correlation was measured by keeping one probe stationary and 
moving the other one in the downstream direction; for the R,, correlation both 
probes were moved an equal lateral distance about the point at which the correla- 
tion distribution was to be measured. 

in. ; 
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In  figure 19 the R,, correlation at  7 = 0 and various cross sections is plotted 
vs. Ax/x. The results collapsed on a single curve indicate the existence of self 
preservation as far as the various scales are concerned. The integral scale ob- 
tained from this figure is (L,),=, = 0.1025~.  The integral scale may also be 
obtained from the spectral measurements of the energy containing eddies by 
using the equation 

From figure 26 one may calculate that (L,),=, = 0.104 - x  which differs by less 
than 2 yo from the L, obtained by integrating the correlation measurement. 

3 

FIGURE 20. Lateral correlation at the centre of the flow (7 = 0). 0, 11.54 in. ; A, 15.50 in. ; 
v, 19.47 in.; 0 ,  23-35 in.; A ,  31.35 in. (Lv)~=o.5um = 0.0555~. 

In figure 20 the R,, correlation is plotted us. Aylx and similar conclusions 
regarding self preservation may be drawn from it. The dimensionless correlation 
coefficients appear to attain their self-preserving distribution at  a distance, 
x, which is smaller than the distance required by the intensity to reach its self- 
preserving level. This fact may also be inferred from the measurements in the 
axisymmetric jet (Wygnanski & Fiedler 1969). 

A lateral traverse of R,, and R,, correlations (figures 21 and 22) indicates 
an increase in integral scales towards the outer part of the flow. The variation 
of scales is not a continuous ever increasing function of 7, as it is in the axi- 
symmetrical jet, but rather a step function dividing the flow into two quite dis- 
tinct regions. In each of the above-mentioned regions the integral scale is 
approximately constant. In  the inner region (L,)i z 0.03642 and (L,)$ M 0 . 0 9 8 ~  
while in the outer region (Lv)o z 0 . 0 5 7 5 ~  ... and (L& M 0 .147~ .  The division 
into two regions is more apparent in the R,, correlation distribution than in R,,. 
In  the former case the inner region corresponds to the zone in which yi < 0.9 
and the outer region extends inwards to an 7 corresponding to yo < 0.9; the 
transition from one integral scale to another occurs at  values of 7 corresponding 
to y > 0.9. The results are not as clear in the R,, distribution because the distance, 
Ax, between the two sensors is measured parallel to the uniform stream, while 
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the flow diverges with x. Some comparison may be made with the findings in 
the axisymmetric mixing layer, which should exhibit similar characteristics 
although it is not a truly self-preserving flow. According to Laurence (1956) 
L, remains constant across the flow; however, according to Bradshaw et al. 
( 1963), L, increases with increasing outward distance. These observations may 

0 0.1 0.2 0.3 0.4 0.5 

Ax/x 

FIGURE 21. Variation of longitudinal correlations across the mixing region. 7 : 0 ,  - 0.145; 
A, -0.105; A ,  -0.045; V, 0.0165; 0, 0.0770. (Lz)i = 0.09822, (LE)o = 0.1472. 
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FIGURE 22. The distribution of lateral correlations across the mixing region. 7 :  0, 0.0770; 
77, 0.0165; A ,  0.035; A, 0.105; 0 ,  0.145. (Ly)i = 0.03642, (Ay),, = 0.0575~.  

not be in conflict as one assumes that the first was based on measurements within 
a single region while the second was deduced from too few measurements made 
across the entire flow. The integral scale observed by Laurence was given by 
L, = 0.0362 which agrees with the present measurements on the high velocity 
side of the flow. 

The lateral integral scales in wakes (L,) are generally larger than in jets 
(Bradbury 1965). Consequently the present behaviour of L, is contrary to the 
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assumption that the results in the wake and the jet may be superimposed to 
represent the two-dimensional mixing layer. 

The convection velocity of the energy containing eddies was obtained from 
the cross-correlations of the u' signal as shown by Davies et al. (1963). The 
convection velocity of the small eddies was obtained in the same manner but 
using (au'lat) instead (figure 23). The dissipation scales are convected downstream 
at a larger velocity than the energy containing eddies ; this velocity is generally 
larger than the local mean velocity except near the inner edge of the mixing 
region, where Dc (of au'jat) = 0*97U,. The convection velocity of the energy 
containing eddies is slower and is approximately equal to 0-85Urn at  the inner 
edge of the flow, Near the core region of an axisymmetric jet uc "N 0.65U, and 
it varies more slowly with radial distance than the mean velocity (Davies et al. 
1963). In  the fully developed region of the axisymmetric jet u, s U, on the centre 
line but dO,,ldy < d E / d y  so that in the outer region of the flow gc > a (Wygnanski 
& Piedler 1969). In the present flow dUc/dy is larger than in the axisymmetric 
configuration so that Uc does not exceed 0 at any point in the flow. The relatively 
large value of dg jdy  may be associated with a lack of large-scale eddies which 
extend across the entire flow. 

-0.2 -0.1 0 0.1 0.2 
7 

FIGURE 23. The variation of convection velocities across the flow. 
, measured values from au'/at signal. 

Heskestad (1965) suggested a transformation from temporal to spatial deriva- 
tives which accounts for relatively high turbulence levels. The derivation em- 
bodies the assumptions of isotropy and the independence of the large-scale 
eddies and the small-scale eddies. The transformation for a normal hot wire in 
the x, y plane is given by 

This equation defines the convection velocity of the dissipative eddies and may 
be compared with experimental results. Since we are interested in the small- 
scale motion it is appropriate to use the turbulent zone averages for this purpose; 

This equation is presented in figure 23. The agreement between the predicted 
conveotion velocity and the observed one is quite good except at the edges of the 



346 I. Wygnanski and H .  E. Fiedler 

flow. Although Heskestad's derivation includes a number of gross assumptions, 
some of which do not apply to the present flow (e.g. the isotropic relations among 
the derivatives), the usefulness of the final result is apparent. 

The convection velocity of the filtered signal is shown in figure 24. The measure- 
ments were done at  three points across the flow. The graphs indicate that the 
larger eddies travel slower but there is no significant increase in convection 
velocity at  the high frequencies as was observed in the axisymmetric jet. 

2rf /Dc (m-1) 

FIGURE 24. The wave-number dependence of the convection velocity. 
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FIGURE 25. The distribution of the Rll, correlations in the moving frame of reference 
acrossthemixingregion.7: e, -0.125; A, -0.105; A, -0.085; v, -0.045; v,  -0.024; 
0 ,  0.036; 0, 0.077; 0, 0.096. 

The fact that only the two upper curves tend to coalesce at the low-frequency 
end serves as additional evidence that the large-scale eddies do not extend across 
the entire flow. 

The moving frame auto-correlations are plotted in figure 25 for various loca- 
tions in the mixing region. Since the correlation coefficient does not go below 
0.5 one cannot determine the associated integral time scales by direct integra- 
tion. One may proceed in the manner outlined by Davies et al. and fit an 
exponential curve to these measurements. But even without doing so it is again 
obvious (see Wygnanski & Fiedler 1969) that no simple relationship between the 
integral time scale and mean shear exists. 
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The power spectral densities of the energy containing eddies are shown in 
figure 26. The percentage of the turbulent energy present at  the very low- 
frequency-end of the spectrum (below 5 cps) is significantly less than in the 
axisymmetric jet. This is reflected in somewhat shorter integration times 
required to obtain the measurements. Although the same equipment was used in 
both investigations, little attention had to be paid to frequencies lower than lcps 
in the present case. The spectral measurements were carried to frequencies 
as low as 0.2 cps (the corresponding wave-number is 0-25 m-l) but they did not 
show any discontinuity which may point to a distinct two-component structure, 
as observed by Townsend (1950) in the self-preserving wake. 

3 
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FIGURE 26. One dimensional spectra of the energy containing eddies. 
(Location x: = 19.47 in., T/ = 0.) 
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7. Higher order velocity products 
The knowledge of triple velocity products is necessary to evaluate the diffu- 

sion term in the energy balance and to correct lower order products. The measure- 
ments were made at  a distance of 19.47 in. from the step and are presented 
in figures 27 to 33. The experimental procedure used is described with the 
measurements in the axisymmetrical jet (Wygnanski & Fiedler 1968). 

The conventional-average measurements and the turbulent-zone-average 
measurements of the cross-products are shown in figures 27 and 28. All quantities 
are of the same order of magnitude and there is no appreciable difference between 
the two averaging processes. The only difference worth mentioning is that 
( u ’ v ’ ~ ) ~  and ( v ‘ u ‘ ~ ) ~  become negative at  the outer edge of the flow, while the con- 
ventional measurements indicate that they simply tend to zero. 

The distributions of u/13 andT3 are shown in figure 29. The difference between 
the conventional average and the zone average results is quite dramatic. Where- 
as the conventional results decrease smoothly to zero at the edges, (.’”>, keeps 

__ ~ 
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increasing towards the low velocity side of the flow and the absolute value of 
(F)T keeps increasing on the high velocity side of the flow. In  addition (21.'3)T 
is an order of magnitude larger than all other quantities (it is multiplied only 
by lo2). The results were consistently repeatable and they indicate that the 

7 

FIGTJFLE 27. __ The distribution of conventional third-order cross products. __ 
0 ,  v'uf2/Ui);  A, v'wyu;; v, .u"2/u:; 0, 2L"2/u:. 
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FIGURE 28. The distribution of third-order cross products in the turbulent zone. ___ 
0 ,  (m/ui)T;  a, ( v " ' / i u ~ ) T ;  v,  ( ~ ' w ' z / ~ T ~ ) y 3 ;  0, (u?/Ui)T. 

diffusion process is different on the two sides of the flow. In  constructing the 
turbulent energy balance it is customary to neglect the term associated with 
@ by introducing the boundary-layer approximation. In  view of the large 
magnitude of (u.13)T such simplification is erroneous. 
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The skewness factors of the conventional measurements are shown in figure 30. 
Although these results can be deduced from the previously presented figures 
they are shown here as they exhibit the same tendencies as the plots of (u)3)T 
and ( T 3 ) T .  The skewness factor of the wf signal is shown on this figure as well. 
The values of are an order of magnitude smaller than v"/UL and 
never exceeded 2 x 10-4. The increase in w'3/(wf2)8 towards the outer edge 
results primarily from the decrease of in that region and is in part attributed 
to uncertainties in the mean flow direction. The skewness factors of the x-deriva- 
tives of the respective components of the fluctuations are shown in figure 31. 

_ _  

I I I J 
0.1 0.2 0 -0.2 -0.1 

7 
FIGURE 29. The third-order products-turbulent zone and conventional averages. 

The flatness factors of the fluctuations and their derivatives were used by 

flatness factor on centre line 
= local flatness factor * 

Townsend to detect intermittency on the assumption that 

The results in the wake (Townsend 1949a) and in the turbulent boundary layer 
(Townsend 1951) are quite consistent in spite of their scatter. The intermittency 
based on this assumption in jets appeared to disagree with the measured results 
of Heskestad (1965) and Wygnanski & Fiedler (1969). 

In figures 32 and 33 the flatness factors of the fluctuations and their deriva- 
tives are shown. The intermittency distribution derived from the flatness 
factor of the fluctuations is too wide in comparison with the measured y parti- 
cularly at the edges of the flow. This may be attributed in part to the potential 
fluctuations and the large-scale motion within the turbulent front. On the other 
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FIGURE 30. The distribution of skewness factors across the flow. _ _  _ L  - -  --.--, u/a/(u/a)# ; . . . . 0 . . . . , vJS/(d2)8; -.-@-.- , W t 3 / ( ~ 8 a ) k  
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FIGURE 31. The skewness factors of the derivative signal. 
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FIGURE 32. The distribution of oonventional flatness factors. -- -I --- --.--, u / 4 / ( u ~ 2 ) 2 ;  ...o... , v'4/(v~2)2; _. - 0 . -. - , wf4/(w'x)a. 
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FIG- 33. The conventional flatness factors of the 'derivative signal. 
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hand the profile o f  intermittency derived from the differentiated signal is too 
narrow as it accentuates the dissipation scales. The two curves together may, of 
course, give the required average results if one accepts the inevitable scatter. 

8. The dissipation terms and microscales 
Five out of the nine derivatives composing the dissipation term have been 

measured. Three temporal derivatives were transformed to spatial derivatives 
in the x direction via the convection velocity of the &‘/at signal. Two transverse 
derivatives were measured by subtracting the signals of two parallel wires which 
were set 0-2 mm apart. The conventional and turbulent-zone averages are shown 
in figures 34 and 35. The ensuing yr and A, microscales are shown in figures 36 
and 37 where figure 37 represents the growth of Af with the distance from the 
step along the line 7 = 0. 

2 

FIGURE 34. The measured dissipations terms. 

The conventional measurements indicate that all terms have approximately 
the same distribution across the flow and are equal in magnitude. Thus it may be 
inferred that the flow is not isotropic. It was initially believed that the potential 
fluctuations affect the results and the turbulent zone averages would conform 
with the isotropic relations. This expectation did not materialize because all 
derivatives of the longitudinal fluctuations in the turbulent zone are again 
approximately equal and increase almost linearly with 7. On the low velocity 
side not only   ax)^ $. + ( a v ’ / a ~ ) ~  but it is almost double (av’/ax)2. 

It was observed previously (e.g. Klebanoff 1955) that the derivatives did not 
obey the isotropic relations, but the disagreement cannot indicate whether the 
anisotropy exists at  other wave-numbers as well. One, of course, does not expect 
isotropy to exist at  the very low wave-numbers which are directly related to 
the mean shear (see also figure 26). 
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The microscales measured in the turbulent zone are smaller than those obtained 
by conventional measurements. The difference between the two types of measure- 
ment is particularly significant at the edges of the flow where the potential 
fluctuations are important. The microscales do not vary much across the flow 
but they slowly increase with downstream distance. The variation of A, with x 
is essentially linear; however, Af does not equal zero at the origin of the flow. 
Some attempts were made to obtain the microscales from correlation measure- 
ments but the results were not satisfactory. 
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FIGURE 35. The dissipation terms in the turbulent zone. 
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FIGURE 36. The distribution of microscales across the flow (conventiond and turbulent 

zone results). -0-, hf; -0-, (hf)~; --n--, hg; --A--, (hg)T. 
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FIGURE 37. The growth of the longitudinal microscale with downstream distance (7 = 0). 

9. The energy balance 
The equation representing the turbulent energy balance in a two-dimensional 

flow may be written in the form 

a B F  gg ($) - T 6 (u,) (vz, - ;)I + [ f : (&) (; - $1 
Production Convection 

DitPusion Pressure transport 
_ _ _ _ _ _ _ - _ _ _ _ - - _ _ .  

= - [ ( g)2 + ( g)2 + ( ;j2 + ( g)2 + (;y + (gy + (=) awl 2 + (%) awl 2 + (=) awl 2 1. us, 
Dissipation 

This equation is obtained by applying the boundary-layer approximation 
to the mean velocity and dropping the viscous diffusion term. Experimental 
evidence justified these omissions; however, other terms which are often omitted 
in the literature (like the production resulting from normal stresses) were re- 
tained since their contribution was not entirely negligible. The production, con- 
vection and diffusion terms were calculated directly from the measured quantities 
without resorting to further assumptions. The dissipation term was calculated 
by assuming that 

___ ___ .___ ___ 
(av'/ay)2 M (avi/az)2 w (aW1/ay)2 M (awi/az)2 = (aw'/azy ; 

___ 
in fact the dissipation term is practically equal to 9 This differs from 
the isotropic case for which the dissipation term is equal to 15 (&A'/&)~. 
The pressure transport term is obtained from the above equation. Each term 
in the energy balance is plotted in figure 38 ; the conventional measurements are 
shown as solid lines while the measurements in the turbulent zone arerepre- 
sented by the dashed lines. 

The inherent asymmetry in this flow is responsible for a somewhat different 
appearance of the turbulent energy balance as compared with the balance in the 
self-preserving axisymmetric jet or wake. For example, the peak in the produc- 
tion which corresponds approximately to the point of inflexion of the mean 
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velocity profile almost; coincides with the place where the dissipation reaches its 
maximum. The convt:ction and pressure transport terms are negligible on the 
outer (lower-velocity) side of the mixing region. The convection term, in parti- 
cular, reaches its maximum at the inner edge of the mixing layer ( g  w 0*97U,) 
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where the turbulent intensity is already quite small. The diffusion term is almost 
symmetrical about 7 = -0.045 (where v'2 has a peak) and is negative at both 
edges of the flow. 

The balance of energy in the turbulent zone of the mixing region was cal- 
culated from the zone average measurements. The dissipation term is not, how- 
ever, equal to 9 (auf/ax)z since the three derivatives of the longitudinal fluctua- 
tions did not resemble the derivatives of the lateral and transverse fluctuations 
(figure 35). The spatial gradients of each term in the zone-average balance 
are less steep than the corresponding terms obtained by the standard method. 

__=_ 

23-2 
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The dissipation term in particular is almost invariant across the flow. A detailed 
comparison between figure 38 (a)  and figure 38 (b)  reveals a number of things: 
(1)  The diffusion term is no longer symmetrical with respect to 7 and the 
turbulent energy is transported by the diffusion process from the centre of the 
mixing region, where the intensity is highest, outwards to the low mean-velocity 
region. ( 2 )  At the outer edge of the mixing region the turbulent energy gained 
by diffusion is lost to viscous dissipation since all other modes of transport and 
production are negligible. The impression conveyed by looking at  the conventional 
measurements is that all terms are small but approximately equal in their 
magnitude. (3) On the inner side of the mixing region the energy lost by con- 
vection is gained by diffusion and pressure transport (figure 38 (a ) ) .  The energy 
balance in this region is very similar to the balance obtained by Townsend 
(1  949) for the outer part of the wake. The similarity comes as no surprise since 
this part of the mixing region may well be regarded as the outer part of a wake. 
On the high velocity side of the turbulent zone (figure 38 ( b ) )  the loss of energy 
resulting from convection and dissipation is balanced by the gain of energy via 
the pressure transport. (4) Only in the centre of the flow where y-f 1 are figures 
38 (a)  and 38 (b)  similar. Here the pressure transport and convection are vanish- 
ingly small and the gain of energy by production is balanced by diffusion and 
dissipation. 

10. Some interpretation of the results and general conclusions 
It seemed instructive to us to compare the present measurements with some of 

the early measurements of Townsend (1949a, b ; 1950) which lead to the large- 
eddy-equilibrium hypothesis. In figure 39 the mean turbulent intensity is shown 
together with the intensity in the turbulent zone. The gradient of the intensity 
measured in the turbulent zone is somewhat smaller than the conventional mean 
gradient but it is comparable to it in magnitude. The turbulent energy in the 
two-dimensional mixing region is thus far from being homogeneous across the 
flow. An apparent homogeneity could have been derived by assuming that 

This equation is, however, in error since the potential fluctuations deep between 
the turbulent bulges are of the same order of magnitude as those inside the 
turbulent zone. Similar results were obtained by Kibens (1968) in the turbulent 
boundary layer. One may also observe from figure 39 the strong correlation 
between the lateral rate of transport of turbulent energy (q) and the gradient 
of this energy. Consequently the anomaly of energy transport up the local gradient 
(Townsend 1949) does not exist. The ever increasing value of (UT)~ on the outer 
side of the flow as well as the continuously increasing value of (~7)~ on the 
inner side is noticeable. It may be indicative of the way the turbulent energy 
is spread outwards. On the other side of the mixing region most of the energy 
is being transported in the axial direction while on the inner side it is transported 
in the lateral direction. It is plausible to suppose, then, that on the high velocity 
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side, the turbulent bulges push outwards while they mainly spread in the axial 
direction on the outer side of the mixing region. The large ratio in magnitude 
between (u’q2), at large positive values of 7 and (p)T at large negative values 
of 7 may explain the reason why the mixing region spreads primarily outwards. 
Indeed if one defines a width of the flow by a constant ratio of turbulent zone 
mean velocity (say, between the locations at  which (g /Um) ,  = 0.25 and 
( = 0.75) one finds that the ratio of the spread of the flow outwards from 
the step to the spread of the flow inwards is equal to the ratio (u’q2/v’q2), at 
these two locations. 

-~ 

FIGURE 39. The distribution of fluctuation intensities and diffusion terms across the 

mixing layer (conventional and turbulent zone results). e, ( q z / U i )  ; 0, ( q 2 / u L ) T ;  
_ _  _ _  

-- _ _  _ _ _  _ -  
A, ( u q z / u i ) ;  A, ( u q 2 / u L ) T ;  v,  (vq2/u2);  v9 (vqz/uk)T* 

The turbulent momentum exchange coefficient (eddy viscosity) and energy 
exchange coefficient (eddy diffusivity) are plotted in figure 40. The eddy vis- 
cosity when measured in the turbulent zone is fairly constant across the entire 
flow. The energy exchange coeficient is much more scattered but it too may be 
considered as constant. At any rate (v’p2), seems to depend on the gradient of 
the turbulent intensity and is not very different in magnitude from the eddy 
viscosity. 

The various averages of the lateral mean velocity are shown in figure 41 

together with the bulk convection velocity (v’q2/q2). The measurements were 
-_ 
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made with an X wire and thus the absolute magnitude of the results should be 
treated with some reservation. The experimental procedure W ~ B  as follows. 
The response of the wires was linearized and matched as close as possible. How- 
ever, this procedure could at best be accurate to within l % which could cause an 
error of more than 100 % in v. Consequently the probe was moved to a position 
7 M - 0.02 where 7 was calculated to be 0.01 1 and the lateral velocity as measured 
there on the first such trial was 0.01 9. A small adjustment in the amplification of 
one of the signals yielded finally the expected result. The probe was then re- 
moved from the mixing region, the response of each wire to changes in axial 
velocity was rechecked and, when found essentially identical to the previous 
calibration, measurements of 7 proceeded. 

0.6 

0.4 

0.2 

0 
- 

. 
a. 

2 -0.1 0 0.1 I 2 

7 
FIGURE 40. The eddy viscosity and eddy diffusivity in tbe turbulent zone. 
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FIGURE 41. The comparison between mean lateral velocities and bulk convection velocities. 
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The direction of FT at both edges of the flow is outwards, but while the mag- 
nitude of FT is almost constant on the low-velocity side it increases with lateral 
distance on the high-velocity side. The ratio between magnitudes of rT on 
both sides of the flow strengthens the argument presented in the previous section 
about the different mechanism in which turbulent energy is being diffused out- 
wards. The bulk convection velocity which is also shown on this figure appears 
to be anomalously high at  most places across the flow. Although Townsend 
(1956) explained the disparity between vT and (v’qz/q2) the same argument no 
longer applied with respect to (v’q2/q2)T. The disparity between vT and (vq2/q2)T 
or (v’qZ/qz) is large; larger than the disparity between corresponding quantities 
in the wake (Townsend 1956). Furthermore, on the inner side of the flow the 
two curves diverge from one another as the distance from the centre increases. 

_.- 

__-  -- 
_ -  

FIGURE 42. An oscillogram of the trace of the lateral velocity. 
(Amplification: 1 cm = 0.125 Urn. Time scale: 1 cm = 10 msec.) Position: 71 = -0.11. 

One may define a characteristic ratio between lateral and longitudinal time 

Vo/b)/(4q M 6, 
scales as 

where 1, is the half width of the flow ; u, V, are here representative meanvelocities. 
The fact that this number is larger than unity implies that on the average the 
entire flow attains its equilibrium in a shorter time than it takes a packet of fluid 
to travel across the flow, unless such a packet makes the trip several times in a 
more or less regular manner. Continuous observations of the trace of the lateral 
velocity, V ,  revealed such regularity within the turbulent zone. It is apparent from 
figure 42 that rT varies almost linearly with time and the values of vT at which 
the probe enters or leaves the turbulent front seem to be quite constant. (The 
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constant varies from point to point with the flow). It may be suggested that the 
large eddies rotate like a solid body and thus as long as they remain large they 
contribute little to the lateral transfer of turbulent energy. The possible solid- 
body rotation of the large eddies is quite appealing as it may also explain the 
linear spatial distribution of the point-average axial velocity profiles. The idea 
of jets shooting out from the core of the turbulent fluid is unlikely because no- 
where did V, have a jet-like profile. It appears, however, that the instantaneous 
lateral velocity may reach as much as 10% of the axial velocity in this flow 
(figure 42). The point average measurements of Kibens (1968) indicated that the 
lateral velocity in the boundary layer did not exceed 1.5 % U,, thus the presence 
of the wall may have a strong inhibiting effect on the size and strength of the 
large eddies. One may conclude that rT carries rather little information about 
the mechanism of lateral energy transport. Point averages without time delay 
will only give the extreme values of V whenever the probe enters or leaves the 
turbulent zone. To obtain more complete information one should sample the 
V, signal at  various time delays after the probe enters the turbulent front. At 
any rate, the transfer of energy or momentum down the intensity gradient can- 
not be ignored. 

Phillips (1967) compared his calculations of the maintenance of Reynolds 
stresses in turbulent shear flow with the measurements of Liepmann & Laufer 
(1947) and supplemented them with the data of Davies et al. (1963). Since all 
necessary quantities were essentially measured in the present investigation 
another comparison seemed in order. First, the integral time scale in the moving 
frame was obtained by assuming RIl7 to have a simple exponentia.1 form (see 
also Davies et al.). The procedure is not accurate because these correlation 
measurements did not extend below 0.5 but the same procedure was also applied 
by Davies et al. The results are tabulated below: 

- 0.1 0.55 2.5 2.80 0.265 0.236 
- 0.05 0.55 4.6 4.00 0.199 0.2 18 
0 0.652 4.7 3.95 0.188 0.206 
0.05 0.885 3.7 2.80 0.204 0.240 
0.1 1.03 2.4 1.45 0.202 0.600 

~ ~~~ ~ ~~ 

The value of A was derived from the equation 

where the values of the shear stress and the intensity of the lateral fluctuations 
is given in figures 14 and 18. The results are rather encouraging, particularly if 
one keeps in mind the manner in which 0 was evaluated. The value of A varies 
rather little across the flow andmaybe assumed to beequal to 0.2. The calculations 
based on previous data yield A = 0.17.t  The corresponding results for A in the 

t Phillips calculated the constant from the equation @(dU/dy)  2: 3.2 but there is a 
corrigendum to the paper of Davies et at. stating that @(dU/dy )  % 4.5. 
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turbulent zone vary more across the flow. The integral scale in the moving frame 
did not seem to be correlated with the gradient of the mean velocity as it was 
in the observations of Davies et al. 

The following conclusions may be drawn from this investigation: ( 1 )  The 
turbulent part of the mixing layer can be divided into two zones one on the high 
velocity side and one on the low velocity side. ( 2 )  The two interfaces binding the 
mixing layer move independently of each other.? (3) The exponential velocity 
profile does not exist instantaneously in this case. (4) The turbulence in this 
flow is not subjected to a constant mean shear because ( d U / d y )  oscillates de- 
pending on the location of the interface. (5) The turbulence is not homogeneous 
and is in general non-isotropic. (6) The simple constant eddy viscosity and eddy 
diffusivity concepts apply remarkably well to the turbulent zone of this flow. 
(7 )  The measurements in the turbulent zone are probably more accurate than the 
conventional measurements. 

The authors are indebted to Mr F. Lange who constructed all the non-standard 
electronic equipment. They also wish to express their appreciation to Professors 
J. Laufer and L. S. G. Kovasznay for their interest and stimulating discussions. 

Part of the work by the first author was done while on sabbatical leave at  
the Technion-Israel Institute of Technology. 
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